Refine Your Search

Topic

Search Results

Technical Paper

An Experimental and Modeling Study of a Diesel Oxidation Catalyst and a Catalyzed Diesel Particulate Filter Using a 1-D 2-Layer Model

2006-04-03
2006-01-0466
Modeling of diesel exhaust after-treatment devices is a valuable tool in the development and performance evaluation of these devices in a cost effective manner. Results from steady state loading experiments on a catalyzed particulate filter (CPF) in a Johnson Matthey CCRT®, performed with and without the upstream diesel oxidation catalyst (DOC) are described in this paper. The experiments were performed at 20, 40, 60 and 75% of full load (1120 Nm) at rated speed (2100 rpm) on a Cummins ISM 2002 heavy duty diesel engine. The data obtained were used to calibrate one dimensional (1-D) DOC and CPF models developed at Michigan Technological University (MTU). The 1-D 2-layer single channel CPF model helped evaluate the filtration and passive oxidation performance of the CPF. DOC modeling results of the pressure drop and gaseous emission oxidation performance using a previously developed model are also presented.
Technical Paper

Analysis of the Physical Characteristics of Diesel Particulate Matter Using Transmission Electron Microscope Techniques

1979-02-01
790815
An Andersen Impactor was used to collect particulate samples in both the undiluted and diluted exhaust from a Caterpillar 3150 diesel engine operated on the EPA 13-mode cycle. A total of 24 samples were examined using the transmission electron microscope and approximately 300 photomicrographs were taken. The microscope analysis and photomicrographs revealed details concerning the physical characteristics of the particulate and permitted a direct visual comparison of the samples collected. The photomicrographs were used to obtain diameter measurements of the basic individual spherical particles that comprise the much larger aggregates/agglomerates. Nearly 11,000 basic particles were measured and the observed range of diameters was 70-1200 Å. The mean particle diameters in the undiluted and diluted exhaust samples were 479 Å and 436 Å respectively. respectively. A respectively. 436 A respectively.
Technical Paper

Catalyzed Particulate Filter Passive Oxidation Study with ULSD and Biodiesel Blended Fuel

2012-04-16
2012-01-0837
A 2007 Cummins ISL 8.9L direct-injection common rail diesel engine rated at 272 kW (365 hp) was used to load the filter to 2.2 g/L and passively oxidize particulate matter (PM) within a 2007 OEM aftertreatment system consisting of a diesel oxidation catalyst (DOC) and catalyzed particulate filter (CPF). Having a better understanding of the passive NO₂ oxidation kinetics of PM within the CPF allows for reducing the frequency of active regenerations (hydrocarbon injection) and the associated fuel penalties. Being able to model the passive oxidation of accumulated PM in the CPF is critical to creating accurate state estimation strategies. The MTU 1-D CPF model will be used to simulate data collected from this study to examine differences in the PM oxidation kinetics when soy methyl ester (SME) biodiesel is used as the source of fuel for the engine.
Technical Paper

Ceramic Particulate Traps for Diesel Emissions Control - Effects of a Manganese-Copper Fuel Additive

1988-02-01
880009
The effect of the use of a manganese-copper fuel additive with a Corning EX-47 particulate trap on heavy-duty diesel emissions has been investigated; reductions in total particulate matter (70%), sulfates (65%), and the soluble organic fraction (SOF) (62%) were measured in the diluted (15:1) exhaust and solids were reduced by 94% as measured in the raw exhaust. The use of the additive plus the trap had the same effect on gaseous emissions (hydrocarbons and oxides of nitrogen) as did the trap alone. The use of the additive without the trap had no effect on measured gaseous emissions, although sulfate increased by 20%. Approximately 50% of the metals added to the fuel were calculated to be retained in the engine system. The metals emitted by the engine were collected very efficiently (>97%) by the trap even during regeneration, which occured 180°C lower when the additive was used.
Technical Paper

Cooperative Study of Heavy Duty Diesel Emission Measurement Methods

1978-02-01
780112
A cooperative test program was conducted by the CRC-APRAC CAPI-1-64 Composition of Diesel Exhaust Program Group to evaluate the technical aspects of a proposed EPA recommended Heavy Duty Diesel Emission Measurement and Test Procedure. The proposed changes affected the sampling configurations and the types of instruments used. Six participants studied the effects of a number of variables on the proposed changes and evaluated some alternative systems that included both CHEMI and NDIR instruments. The tests were conducted at one site using a multi-cylinder engine operating on the 13-Mode Cycle. Equivalency of systems was demonstrated and the best performance was obtained with a special NDIR system.
Technical Paper

Development of a 1-D CPF Model to Simulate Active Regeneration of a Diesel Particulate Filter

2009-04-20
2009-01-1283
A quasi-steady 1-dimensional computer model of a catalyzed particulate filter (CPF) capable of simulating active regeneration of the CPF via diesel fuel injection upstream of a diesel oxidation catalyst (DOC) or other means to increase the exhaust gas temperature has been developed. This model is capable of predicting gaseous species concentrations (HC's, CO, NO and NO2) and exhaust gas temperatures within and after the CPF, for given input values of gaseous species and PM concentrations before the CPF and other inlet variables such as time-varying temperature of the exhaust gas at the inlet of the CPF and volumetric flow rate of exhaust gas.
Technical Paper

Development of a 1-D Catalyzed Diesel Particulate Filter Model for Simulation of the Oxidation of Particulate Matter and Gaseous Species During Passive Oxidation and Active Regeneration

2013-04-08
2013-01-1574
Numerical modeling of aftertreatment systems has been proven to reduce development time as well as to facilitate understanding of the internal physical and chemical processes occurring during different operating conditions. Such a numerical model for a catalyzed diesel particulate filter (CPF) was developed in this research work which has been improved from an existing numerical model briefly described in reference. The focus of this CPF model was to predict the effect of the catalyst on the gaseous species concentrations and to develop particulate matter (PM) filtration and oxidation models for the PM cake layer and substrate wall so as to develop an overall model that accurately predicts the pressure drop and PM oxidized during passive oxidation and active regeneration. Descriptions of the governing equations and corresponding numerical methods used with relevant boundary conditions are presented.
Technical Paper

Development of the Methodology for Quantifying the 3D PM Distribution in a Catalyzed Particulate Filter with a Terahertz Wave Scanner

2014-04-01
2014-01-1573
Optimizing the performance of the aftertreatment system used on heavy duty diesel engines requires a thorough understanding of the operational characteristics of the individual components. Within this, understanding the performance of the catalyzed particulate filter (CPF), and the development of an accurate CPF model, requires knowledge of the particulate matter (PM) distribution throughout the substrate. Experimental measurements of the PM distribution provide the detailed interactions of PM loading, passive oxidation, and active regeneration. Recently, a terahertz wave scanner has been developed that can non-destructively measure the three dimensional (3D) PM distribution. To enable quantitative comparisons of the PM distributions collected under different operational conditions, it is beneficial if the results can be discussed in terms of the axial, radial, and angular directions.
Journal Article

Effects of Biodiesel Blends on Particulate Matter Oxidation in a Catalyzed Particulate Filter during Active Regeneration

2010-04-12
2010-01-0557
Active regeneration experiments were performed on a production diesel aftertreatment system containing a diesel oxidation catalyst and catalyzed particulate filter (CPF) using blends of soy-based biodiesel. The effects of biodiesel on particulate matter oxidation rates in the filter were explored. These experiments are a continuation of the work performed by Chilumukuru et al., in SAE Technical Paper No. 2009-01-1474, which studied the active regeneration characteristics of the same aftertreatment system using ultra-low sulfur diesel fuel. Experiments were conducted using a 10.8 L 2002 Cummins ISM heavy-duty diesel engine. Particulate matter loading of the filter was performed at the rated engine speed of 2100 rpm and 20% of the full engine load of 1120 Nm. At this engine speed and load the passive oxidation rate is low. The 17 L CPF was loaded to a particulate matter level of 2.2 g/L.
Technical Paper

Effects of a Catalyzed Particulate Filter on Emissions from a Diesel Engine: Chemical Characterization Data and Particulate Emissions Measured with Thermal Optical and Gravimetric Methods

2003-03-03
2003-01-0049
A wide range of emissions were characterized from a heavy-duty diesel engine operated on conventional low sulfur (∼375 ppm) fuel, equipped with manually controlled EGR and a catalyzed particulate filter (CPF). The effect of the CPF and engine load was studied, along with a comparison of results between the gravimetric and thermal optical methods (TOM) for determining diesel particulate levels. Data were obtained from four of the EPA old 13 mode test cycle steady-state operating conditions, i.e., Modes 11, 10, 9, and 8 using a 1995 Cummins M11-330E engine with a Corning EX-80 cordierite particulate filter, coated with a platinum catalyst (5 g/ft3).
Technical Paper

Effects of a Ceramic Particle Trap and Copper Fuel Additive on Heavy-Duty Diesel Emissions

1994-10-01
942068
This research quantifies the effects of a copper fuel additive on the regulated [oxides of nitrogen (NOx), hydrocarbons (HC) and total particulate matter (TPM)] and unregulated emissions [soluble organic fraction (SOF), vapor phase organics (XOC), polynuclear aromatic hydrocarbons (PAH), nitro-PAH, particle size distributions and mutagenic activity] from a 1988 Cummins LTA10 diesel engine using a low sulfur fuel. The engine was operated at two steady state modes (EPA modes 9 and 11, which are 75 and 25% load at rated speed, respectively) and five additive levels (0, 15, 30, 60 and 100 ppm Cu by mass) with and without a ceramic trap. Measurements of PAH and mutagenic activity were limited to the 0, 30 and 60 ppm Cu levels. Data were also collected to assess the effect of the additive on regeneration temperature and duration. Copper species collected within the trap were identified and exhaust copper concentrations quantified.
Technical Paper

Experimental Studies of an Advanced Ceramic Diesel Particulate Filter

2008-04-14
2008-01-0622
A Cummins ISB 5.9 liter medium-duty engine with cooled EGR has been used to study an early extrusion of an advanced ceramic uncatalyzed diesel particulate filter (DPF). Data for the advanced ceramic material (ACM) and an uncatalyzed cordierite filter of similar dimensions are presented. Pressure drop data as a function of mass loadings (0, 4, and 6 grams of particulate matter (PM) per liter of filter volume) for various flow rate/temperature combinations (0.115 - 0.187 kg/sec and 240 - 375 °C) based upon loads of 15, 25, 40 and 60% of full engine load (684 N-m) at 2300 rpm are presented. The data obtained from these experiments were used to calibrate the MTU 1-D 2-Layer computer model developed previously at MTU. Clean wall permeability determined from the model calibration for the ACM was 5.0e-13 m2 as compared to 3.0e-13 m2 for cordierite.
Technical Paper

Experimental Study Comparing Particle Size and Mass Concentration Data for a Cracked and Un-Cracked Diesel Particulate Filter

2009-04-20
2009-01-0629
Steady state loading characterization experiments were conducted at three different engine load conditions and rated speed on the cracked catalyzed particulate filter (CPF). The experiments were performed using a 10.8 L 2002 Cummins ISM-330 heavy duty diesel engine. The CPF underwent a ring off failure, commonly seen in particulate filters, due to high radial and axial temperature gradients. The filters were cracked during baking in an oven which was done to regenerate PM collected after every loading characterization experiment. Two different configurations i.e. with and without a diesel oxidation catalyst (DOC) upstream of the CPF were studied. The data were compared with that on an un-cracked CPF at similar engine conditions and configurations. Pressure drop, transient filtration efficiency by particle size and PM mass and gaseous emissions measurements were made during each experiment.
Technical Paper

Experimental and Modeling Results Comparing Two Diesel Oxidation Catalyst - Catalyzed Particulate Filter Systems

2008-04-14
2008-01-0484
Steady-state particulate loading experiments were conducted on an advanced production catalyzed particulate filter (CPF), both with and without a diesel oxidation catalyst (DOC). A heavy-duty diesel engine was used for this study with the experiments conducted at 20, 40, 60 and 75 % of full load (1120 Nm) at rated speed (2100 rpm). The data obtained from these experiments were used and are necessary for calibrating the MTU 1-D 2-Layer CPF model. These experimental and modeling results were compared to previous research conducted at MTU that used the same engine but an earlier development version of the combination of DOC and CPF. The motivation for the comparison of the two systems was to determine whether the reformulated production catalysts performed as good or better than the early development catalysts. The results were compared to understand the filtration and oxidation differences between the two DOC+CPF and the CPF-only aftertreatment systems.
Technical Paper

Extended Kalman Filter to Estimate NO, NO2, Hydrocarbon and Temperatures in a DOC during Active Regeneration and Under Steady State Conditions

2015-04-14
2015-01-1059
Diesel Oxidation Catalysts (DOC) are used on heavy duty diesel engine applications and experience large internal temperature variations from 150 to 600°C. The DOC oxidizes the CO and HC in the exhaust to CO2 and H2O and oxidizes NO to NO2. The oxidation reactions are functions of its internal temperatures. Hence, accurate estimation of internal temperatures is important both for onboard diagnostic and aftertreatment closed loop control strategies. This paper focuses on the development of a reduced order model and an Extended Kalman Filter (EKF) state estimator for a DOC. The reduced order model simulation results are compared to experimental data. This is important since the reduced order model is used in the EKF estimator to predict the CO, NO, NO2 and HC concentrations in the DOC and at the outlet. The estimator was exercised using transient drive cycle engine data. The closed loop EKF improves the temperature estimate inside the DOC compared to the open loop estimator.
Technical Paper

Modeling Study of Active Regeneration of a Catalyzed Particulate Filter Using One-Dimensional DOC and CPF Models

2011-04-12
2011-01-1242
The catalyzed particulate filter (CPF), used in conjunction with a diesel oxidation catalyst (DOC) is an important aftertreatment device used to meet Environmental Protection Agency (EPA) heavy-duty diesel emission standards for particulate matter (PM). Numerical modeling of these exhaust after-treatment devices decreases the time and cost of development involved. Modeling CPF active regeneration gives insight into the PM oxidation kinetics, which helps in reducing the regeneration fuel penalty. As seen from experimental data, active regeneration of the CPF results in a significant temperature increase into the CPF (up to 8°C/sec) which affects the oxidation rate of particulate matter (PM). PM oxidation during active regeneration was determined to be a function of filter PM loading, inlet temperature and inlet hydrocarbon concentration.
Technical Paper

Modeling and Numerical Simulation of Diesel Particulate Trap Performance During Loading and Regeneration

2002-03-04
2002-01-1019
A 2-dimensional numerical model (MTU-FILTER) for a single channel of a honeycomb ceramic diesel particulate trap has been developed. The mathematical modeling of the filtration, flow, heat transfer and regeneration behavior of the particulate trap is described. Numerical results for the pressure drop and particulate mass were compared with existing experimental results. Parametric studies of the diesel particulate trap were carried out. The effects of trap size and inlet temperature on the trap performance are studied using the trap model. An approximate 2-dimensional analytical solution to the simplified Navier-Stokes equations was used to calculate the velocity field of the exhaust flow in the inlet and outlet channels. Assuming a similarity velocity profile in the channels, the 2-dimensional Navier-Stokes equations are approximated by 1-dimenisonal conservation equations, which is similar to those first developed by Bissett.
Technical Paper

Oxidation Catalytic Converter and Emulsified Fuel Effects on Heavy-Duty Diesel Engine Particulate Matter Emissions

2002-03-04
2002-01-1278
The effects of an oxidation catalytic converter (OCC), an emulsified fuel, and their combined effects on particle number and volume concentrations compared to those obtained when using a basefuel were studied. Particle size and particulate emission measurements were conducted at three operating conditions; idle (850 rpm, 35 Nm), Mode 11 (1900 rpm, 277 Nm) and Mode 9 (1900 rpm, 831 Nm) of the EPA 13 mode cycle. The individual effects of the emulsified fuel and the OCC as well as their combined effects on particle number and volume concentrations were studied at two different particle size ranges; the nuclei (less than or equal to 50 nm) and accumulation (greater than 50 nm) modes. An OCC loaded with 10 g/ft3 platinum metal (OCC1) and a 20% emulsified fuel were used for this study and a notable influence on the particle size with respect to number and volume distributions was observed.
Technical Paper

Physical Size Distribution Characterization of Diesel Particulate Matter and the Study of the Coagulation Process

1978-02-01
780788
Diesel particulate matter in both the diluted and undiluted state is subject to the processes of coagulation, condensation or evaporation, and nucleation which causes continuous changes in its physical characteristics. The Electrical Aerosol Analyzer (EAA) is used to measure the diesel particle size distribution in the MTU dilution tunnel for a naturally aspirated direct-injection diesel engine operated on the EPA 13 mode cycle. The design and development of accurate and repeatable sampling methods using the EAA are presented. These methods involve both steady-state tunnel and bag measurements. The data indicate a bimodal nature within the 0.001 to 1 μm range. The first mode termed the “embroynic mode” has a saddle point between 0.005 to 0.015 μm and the second mode termed the “aggregation mode” lies between .08 to .15 μm for the number distribution.
Technical Paper

The Characterization of the Hydrocarbon and Sulfate Fractions of Diesel Particulate Matter

1978-02-01
780111
One of the more objectionable aspects of the use of diesel engines has been the emission of particulate matter. A literature review of combustion flames, theoretical calculations and dilution tunnel experiments have been performed to elucidate the chemical and physical processes involved in the formation of diesel particulate matter. A comparative dilution tunnel study of diluted and undiluted total particulate data provided evidence supporting calculations that indicate hydro-carbon condensation should occur in the tunnel at low exhaust temperatures. The sample collection system for the measurement of total particulate matter and soluble sulfate in particulate matter on the EPA 13 mode cycle is presented. A method to correct for hydrocarbon interferences in the EPA barium chloranilate method for the determination of sulfate in particulate matter is discussed.
X